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Abstract
We present a new mechanism for harmonic generation in magnetorheologi-
cal (MR) fluids, which differs from the usual ones due to magnetic anisotropy
existing in amorphous ferromagnetic materials. Based on thermodynamics, we
derive the incremental magnetic susceptibility of the MR fluid which is par-
tially situated in a nonuniform magnetic field, and further extract the desired
harmonics analytically. By measuring such harmonics, it seems possible to
monitor the structure of MR fluids.

1. Introduction

During the last decades, the structure of colloidal suspensions has received much attention in
scientific research [1–6]. Magnetorheological (MR) fluids [5, 6] contain usually ferromagnetic
particles (iron) in carrier liquids (e.g., oil), and have gained much attention due to their
potential applications, ranging from shock-absorbers for cars to cancer therapy [7]. All of
these applications are due to the novel property of MR fluids that switch from a liquid state
to a semi-solid, the ground state of which is a body-centred tetragonal structure [6]. It is
known that the existence of magnetic anisotropy in amorphous ferromagnetic materials can
induce harmonics in the magnetization [8]. Also, the determination of the anisotropy field
distribution and in turn the magnetic anisotropy distribution is made by the second harmonic
of the magnetization [8] measured perpendicularly to the easy magnetization direction, in the
range from saturation to remanence, for a number of magnetic recording systems, provided that
the easy axes are oriented at right angles to the applied magnetic field. This kind of magnetic
anisotropy is intrinsic, and serves as a physical basis for magnetic recording systems. In
contrast, we shall present a quite different mechanism for harmonic generation in MR fluids
which are partially subjected to a nonuniform dc magnetic field coupling with an ac field.
The current mechanism we exploit is not intrinsic, but results from the circumstance of the
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system, and the resulting harmonic generations are expected to be an efficient way to monitor
the structure of MR fluids.

It is known that an inhomogeneous magnetic field H can exert on a ferromagnetic particle
with a permanent magnetic dipole moment a translational force. In this regard, if the permanent
magnetic moment points in the direction of H, the particles will be displaced towards regions
of higher field strength. In a macroscopic sample the average moment is in the direction of the
field, namely the particles favour orientations with their permanent magnetic moments in the
direction of the field. Thus, an inhomogeneous field acting on a macroscopic sample causes a
concentration gradient with high concentrations at high field strengths. If a sample is situated
partially in a field at a constant pressure, the density of the matter in the field will increase,
leading to an increase in the permeability.

The paper is organized as follows. In section 2, we derive the incremental magnetic
susceptibility and then extract the harmonics in the magnetization analytically. Also, we do
some numerical simulations under different conditions. This paper ends with a discussion and
conclusion in section 3.

2. Formalism and numerical results

2.1. Incremental magnetic susceptibilities

If a model MR fluid is situated partially in an inhomogeneous magnetic field at a constant
pressure, the density of the ferromagnetic particles will increase due to the interaction between
the particles and field, thus yielding an increase in the effective permeability. More precisely,
there is a field-affected (FA) area with volume Vc, in which the magnetic field and the
magnetic induction are denoted by Hc and Bc, respectively. They both satisfy the magnetostatic
equations [9], ∇ · Bc = 0 and ∇ × Hc = 0, the latter of which implies that the magnetic field
Hc can be expressed as the gradient of a magnetic scalar potential � such that Hc = −∇�.
Under an appropriate boundary condition, the inhomogeneous MR fluid inside the FA area can
be represented as a region of volume Vc, surrounded by surface S′. Such a kind of boundary
condition is � = −H · X on S′, which, if the MR fluid within Vc were uniform, would give
rise to a magnetic field which is identical to H (external field) everywhere within Vc. In
fact, even in an inhomogeneous MR fluid under this boundary condition, the volume average
of the magnetic field 〈Hc〉 within Vc is still equal to that of the external field 〈H〉, namely,
〈Hc〉 ≡ (1/Vc)

∫
Hc(X) d3x = 〈H〉. The considered MR fluid with volume V is situated both

inside and outside the FA area at a constant pressure p. It is worth noting that in this case
there is no external field outside the FA area (or the external field outside the FA area is weak
enough to be neglected).

In the presence of an inhomogeneous magnetic field H along z axis, the usual linear
relation between the magnetization and magnetic field M = χ〈H〉 should be changed to a
nonlinear form

M = [χ + �χ(〈H〉)]〈H〉, (1)

where χ denotes the (effective) linear magnetic susceptibility, and �χ(〈H〉), a function of 〈H〉,
stands for the incremental magnetic susceptibility (nonlinear term). That is, for the MR fluid
inside the FA area its effective permeability µ̃e including the incremental part can be expressed
as

µ̃e = µe + 12π�χ(〈H〉), (2)

where µe is the effective linear permeability.
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On the other hand, based on thermodynamics the permeability µ̃e can be defined as

µ̃e =
(

∂〈B〉
∂〈H〉

)
T,p

=
(

∂〈B〉
∂〈H〉

)
T,ρ

+

(
∂〈B〉
∂ρ

)
T,〈H〉

(
∂ρ

∂〈H〉
)

T,p

, (3)

where ρ stands for the density of the particles inside the FA area. In equation (3), ( ∂〈B〉
∂〈H〉 )T,ρ ≡ µe

is given by the anisotropic Kirkwood–Fröhlich equation

(µe − µe0)[µe + (µe0 − µe)β
(L)]

µe
= 4π N

3kBT
gm ′2, (4)

with m ′ = m0(µe0 + 2µ2)/(3µ2), where µ2 represents the permeability of the carrier fluid,
g the Kirkwood correlation factor [10], m0 the permanent magnetic dipole moment of the
particles, N the number density of the particles, kB the Boltzmann constant, and T the
temperature. In equation (4), µe0 stands for the (linear) permeability characteristic for the
induced magnetization. In the presence of the magnetic field particle chains can be formed
along the z axis in MR fluids, thus yielding structural anisotropy inside the system. In this case,
the degree of anisotropy of the system is measured by how β(L) deviates from 1/3 (note that
there is 0 < β(L) � 1/3), where β(L) represents the demagnetizing factor in longitudinal
field cases. This kind of parameter was measured for electrorheological fluids by using
computer simulations [11] and theoretical analysis [12]. In particular, β(L) = 1/3 corresponds
to the isotropic case (i.e., the particles are randomly distributed), which yields the well known
(isotropic) Kirkwood–Fröhlich equation [10, 13, 14]. It is worth remarking that there is a sum
rule β(L) + 2β(T) = 1 [15, 16], where β(T) is the demagnetizing factor in transverse field cases.
In this work, we shall focus on longitudinal field cases only. For convenience, β(L) will be
denoted by β in the following.

In equation (4), the term m ′2/(3kBT ) results from the average contribution of the permanent
magnetic dipole moment to the average value of the work required to bring a particle into
the field 〈H〉. More precisely, the mean value of the component of the dipole moment in
the direction of the field is given by m ′L(η) = m ′2〈H 〉/(3kBT ), with Langevin parameter
η = m ′〈H 〉/(kBT ). As a matter of fact, for the weak nonlinearity of interest, it suffices
to set the linear Langevin function L(η) = η/3. It is true that the Langevin function can
be nonlinear, too, by keeping more terms. However, a perturbation approach [17] can be
adopted for weak-nonlinearity cases. In the perturbation approach, it is well established that
the effective third-order nonlinearity (namely, the incremental magnetic susceptibility, see
equation (8) below) can be calculated from the linear field [18], while the effective higher-
order nonlinearity must depend on the nonlinear field [17]. Nevertheless, this higher-order
nonlinearity is always much weaker than the third-order, and thus its effect on the harmonic
generations can be neglected in the present paper.

Regarding the incremental susceptibility (i.e., last term of equation (3)), it is equivalent
to 12π�χ(〈H〉). That is, we have

�χ(〈H〉) = 〈H〉
12π

(
∂µe

∂ρ

)
T,〈H〉

(
∂ρ

∂〈H〉
)

T,p

. (5)

The differential increase of the density inside the FA area dρ corresponds to the increase in
mass equal to Vc dρ. This increase in mass is equal to a decrease in mass outside the FA area
given by −ρ d(V − Vc) = −ρ dV , so that dρ = −[ρ/Vc] dV . Accordingly, equation (5) is
rewritten as

�χ(〈H〉) = − ρ〈H〉
12πVc

(
∂µe

∂ρ

)
T,〈H〉

(
∂V

∂〈H〉
)

T,p

. (6)
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Then we can obtain (∂V/∂〈H〉)T,p based on the differential of the free energy dF =
−S dT − p dV + Vc/(4π)〈H〉 d〈B〉, where S denotes the entropy. Using the transformed free
enthalpy 	̃ = F + pV −Vc/(4π)〈H〉〈B〉, its differential can be given by d	̃ = −S dT +V d p−
Vc/(4π)〈B〉 d〈H〉. From this equation,we find (∂V/∂〈H〉)T,p = −Vc〈H〉/(4π)(∂µe/∂p)T,〈H〉.
Then, the substitution of this into equation (6) leads to

�χ(〈H〉) = ρ〈H〉2

48π2

(
∂µe

∂ρ

)
T,〈H〉

(
∂µe

∂p

)
T,〈H〉

. (7)

Next, we use (∂µe/∂p)T,〈H〉 = αρ(∂µe/∂ρ)T , where α = −1/V (∂V/∂p)T is the
compressibility in the absence of the field. In this equation, terms depending on 〈H〉 have
been neglected since they lead to terms in powers of 〈H〉 higher than the second (nonlinear
field) in equation (7). So far equation (7) can be rewritten as

�χ(〈H〉) = αρ2〈H〉2

48π2

(
∂µe

∂ρ

)2

T

. (8)

2.2. Harmonic generation

Now let us investigate the harmonic generation owing to the nonlinear term (see equations (1)
and (8)). In view of equation (1), the orientational magnetization along z axis has the following
general form:

M = µe − µ2

4π
〈H〉 + ξ〈H〉3, (9)

where the third-order nonlinear coefficient ξ is defined as ξ ≡ �χ(〈H〉)/〈H〉2. We use
an inhomogeneous dc field like H̄dc = (lz(z)/Lz)Hdcẑ where 0 < lz(z) � Lz with Lz

being the length of the FA area (which is here assumed to be cubic) along the z axis.
Without loss of generality, Lz is set to unity. Meanwhile, a sinusoidal ac magnetic field
Hac = Hac(t)ẑ = Hacẑ sin(ωt) is applied. Therefore, the magnetization M can be further
expressed in terms of odd- and even-order harmonics such that

M = Mdc + Mω sin(ωt) + M2ω cos(2ωt) + M3ω sin(3ωt), (10)

where the dc component (Mdc), fundamental harmonics (Mω), and second- and third-order
harmonics (M2ω and M3ω) are respectively given by

Mdc = µe − µ2

8π
Hdc +

3ξ

4
Hdc H 2

ac +
ξ

8
H 3

dc, (11)

Mω = µe − µ2

4π
Hac +

3ξ

4
HacH 2

dc +
3ξ

4
H 3

ac, (12)

M2ω = −3ξ

4
HdcH 2

ac, (13)

M3ω = −ξ

4
H 3

ac. (14)

In the above derivation,we have used two identities, sin3(ωt) = (3/4) sin(ωt)−(1/4) sin(3ωt)
and sin2(ωt) = [1 − cos(2ωt)]/2.

2.3. Numerical results

For a quantitative understanding, let us do some numerical simulations. Using the Onsager
consideration, we set the Kirkwood correlation factor g = 1, which means that there are no
more correlations between the particle orientations than can be accounted for with the aid of the



New mechanism for harmonic generation in magnetorheological fluids 7893

3 4 5 6 7 8 9 10
1/β

0.8

1

1.2

1.4

1.6

1.8
ξ 

(1
0-1

0 O
e-2

)

3 4 5 6 7 8 9 10
1/β

0

0.5

1

H
ar

m
on

ic
s

Mω (10
2
emu)

|M
2ω| (10

-6
emu)

|M
3ω| (10

-7
 emu)

Figure 1. Nonlinear coefficient ξ against the degree of
anisotropy 1/β (dimensionless). Parameters: volume
fraction of the particles 0.2, particle radius 95 µm, m =
10−9 emu, T = 298 K, α = 2.1 × 10−10 Pa−1, µ2 = 1,
and µe0 = 6.

Figure 2. Fundamental and second- and third-order
harmonics of the magnetization, Mω , M2ω , and M3ω ,
against the degree of anisotropy 1/β. Parameters are
the same as those in figure 1. Other parameters: Hdc =
100 Oe and Hac = 10 Oe.

continuum method. In figure 1 we show the nonlinear coefficient ξ as a function of the degree
of anisotropy 1/β. Figure 2 displays the fundamental and second- and third-order harmonics
of the magnetization as a function of 1/β. Here 1/β = 3 represents an isotropic limit. As
more particle chains are formed, the corresponding 1/β increases. This causes the nonlinear
coefficient to decrease (see figure 1), thus yielding decreasing harmonics of the magnetization
(see figure 2). In this sense, it becomes possible to monitor the structure of MR fluids by
detecting such harmonics.

3. Discussion and conclusion

Here some comments are in order. In this work, we have presented a new mechanism for
harmonic generation in MR fluids,which differs from the usual ones due to magnetic anisotropy
existing in amorphous ferromagnetic materials. Based on thermodynamics, we derive the
incremental magnetic susceptibility of the MR fluid which is partially situated in a nonuniform
magnetic field, and further extract the harmonics analytically.

For the present system under consideration, the nonlinearity could be caused to appear
by three effects [14], namely, normal saturation, anomalous saturation, and magnetostriction.
In detail, the normal saturation arises from the higher terms of the Langevin function at large
field intensities. As the strength of the field is large enough, this kind of normal saturation
should be taken into account. In the present paper, since the field strength may be moderate,
the normal saturation might be expected to be small enough to be neglected. Regarding the
anomalous saturation, it results from the equilibrium between entities (i.e., particle chains in
this work) with higher and lower dipole moments which is shifted under the influence of the
field. In this work, the correlation between the dipole moments of the particle chains and in
turn the anomalous saturation are neglected in the sense that the current anomalous saturation
is much more weak. This is because in the presence of a magnetic field the permanent magnetic
moments of the particles are easily directed along the field. Therefore, the equilibrium between
higher dipole moment (of particle chains) and lower dipole moment (of particle chains) would
not be able to predict significant nonlinearity. So, the focus of this work is on the effect of
magnetostriction which arises from an inhomogeneous magnetic field.
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From equation (8), we find that the obtained third-order nonlinear coefficient ξ is
proportional to the compressibility in the absence of the field. To some extent, it can be
concluded that ξ is actually related to the pressure in the absence of the field, which is a well
defined quantity. However, the pressure is not a well defined quantity in the presence of fields.
To study the nonlinearity higher than the third order, the pressure in the presence of the field
must be further taken into account, based on the present formalism. In this work, we have
neglected the higher-order nonlinearity since it is always much weaker than the third order.
If one does need to investigate the higher-order nonlinearity, one had better work with the
chemical potential instead in the sense that it remains a well defined quantity.

It is also of interest to extend the present theory to other colloidal suspensions like
ferrofluids [1], electrorheological fluids [2], or charged colloids [3]. In addition, one can also
discuss a system containing graded particles, in an attempt to take into account the gradation
effect [19].

To sum up, based on thermodynamics we have theoretically exploited a new mechanism
for harmonic generation in MR fluids. Such harmonics are expected to play a role in monitoring
the structure of MR fluids.
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